
The Core of streaming

Jack Kelly

November 12th, 2024

Why Stream?

Same reasons as for other languages:
Interleave effectful work and the production of results
Process lots of data in bounded space

How to Stream?

iteratee

io-streams

pipes

conduit

machines

streamly

streaming

. . .

Why I like streaming

(Reasonably) simple core type
Not too many type variables
No custom operators
Not too many warts

Let’s build its core type!

Attempt 1: Lists

data Stream a =
= Step a (Stream a)
| Done

Problem: When do effects happen?
Non-solution: Lazy I/O.
Solution: Make them explicit.

Aside: Problems with lazy I/O

What does this program print?

main :: IO ()
main = do

lineCount <- withFile "temp.txt" ReadMode $ \h ->
length . lines <$> hGetContents h

putStrLn $ show (lineCount :: Int) ++ " lines counted."

hGetContents: illegal operation (delayed read on closed handle)

Aside: Problems with lazy I/O

What does this program print?

main :: IO ()
main = do

lineCount <- withFile "temp.txt" ReadMode $ \h ->
length . lines <$> hGetContents h

putStrLn $ show (lineCount :: Int) ++ " lines counted."

hGetContents: illegal operation (delayed read on closed handle)

Attempt 2: Adding Effects

Add type variable m and constructor Effect.
m is almost always a Monad.
Now we know when we need to do effectful work:

data Stream a m =
= Step a (Stream a m)
| Effect (m (Stream a m))
| Done

Example: untilJust :: m (Maybe a) -> Stream a m

Next Problem: There could be an unbounded amount of work behind each a.
Solution: Make the stream strict in a.

Attempt 3: Adding Strictness

Force each “a” (to at least WHNF) before putting it in the Stream:

data Stream a m =
= Step !a (Stream a m)
| Effect (m (Stream a m))
| Done

Next Problems:
How to split a stream without needlessly buffering?
How to return an error result?

Solution: Let Done carry a result.

Attempt 4: Adding Results

Add a result type r to the Done constructor:

data Stream a m r =
= Step !a (Stream a m r)
| Effect (m (Stream a m r))
| Done r

Example:
splitAt :: Int -> Stream a m r -> Stream a m (Stream a m r)

Example: untilLeft :: m (Either r a) -> Stream a m r

One weird trick

Un-inline the item and rest-of-stream from Step
Stream (Of a) is isomorphic to the previous slide’s Stream a

Of is partially applied!

We have now reached the “real” type from streaming

data Of a b = !a :> b deriving Functor

data Stream f m r =
= Step !(f (Stream f m r))
| Effect (m (Stream f m r))
| Done r

What does this enable? Lots!

chunksOf ::
(Monad m, Functor f) =>
Int ->
Stream f m r ->
Stream (Stream f m) m r

A Step constructor now contains an inner stream, which returns the remainder of
the outer stream when it’s done

What else does this enable?

copy ::
(Monad m) =>
Stream (Of a) m r ->
Stream (Of a) (Stream (Of a) m) r

An Effect constructor now wraps an inner stream, which yields a second copy of
every element.

But wait, there’s more!

Parsing an archive format:
First, a Header including the name and length of all blobs
Then, a concatenated sequence of compressed blobs

data Header = Header { records :: [Record] }
data Record = Record { name :: Text , compressedLength :: Int }
decodeHeader ::

Stream (Of ByteString) m r ->
m (Either String (Header , Stream (Of BytesString) m r))

data Blob m r =
Blob { name :: Text , data_ :: Stream (Of ByteString) m r }
deriving Functor

decodeBlobs ::
MonadIO m =>
Header -> Stream (Of ByteString) m r -> Stream (Blob m) m r

But wait, there’s more!

Parsing an archive format:
First, a Header including the name and length of all blobs
Then, a concatenated sequence of compressed blobs

data Header = Header { records :: [Record] }
data Record = Record { name :: Text , compressedLength :: Int }
decodeHeader ::

Stream (Of ByteString) m r ->
m (Either String (Header , Stream (Of BytesString) m r))

data Blob m r =
Blob { name :: Text , data_ :: Stream (Of ByteString) m r }
deriving Functor

decodeBlobs ::
MonadIO m =>
Header -> Stream (Of ByteString) m r -> Stream (Blob m) m r

It’s not perfect

ByteString is idiomatically handled by streaming-bytestring
ByteStream m r is like Stream (Of ByteString) m r, unpacked and inlined for
efficiency

No early finalisation
Difficult to say “I’m done now, close the Handle” without extra effort

Still possible to buffer more than planned, if you really try

The future of streaming

A port of streaming to linear-base
Enables some cool stuff:

data Header = Header { records :: [Record] }
data Record = Record { name :: Text , compressedLength :: Int }
data Blob m r =

Blob {
name :: Text ,
data_ :: Stream (Of ByteString) m r

} deriving Functor

decodeBlob ::
Handle %1 ->
Record ->
Blob m Handle

